Example 9: Generic signal modulator

As there are a variety of modulation formats, pypho offers a simple generic signal modulator.

You can define each constellation in the complex plain in a list:

For exampel a 16QAM:

constpts = [([1.0]*16),
             ([2.0*np.pi*x/16.0 for x in range(0,16)] ),
             ([colors.values()[x] for x in range(0,16)]),
             ([x for x in range(0,16)]),
             ([(0),(0),(0),(0)], [(0),(0),(0),(1)], [(0),(0),(1),(0)], [(0),(0),(1),(1)], [(0),(1),(0),(0)], [(0),(1),(0),(1)], [(0),(1),(1),(0)], [(0),(1),(1),(1)],
              [(1),(1),(1),(1)], [(1),(1),(1),(0)], [(1),(1),(0),(1)], [(1),(1),(0),(0)], [(1),(0),(1),(1)], [(1),(0),(1),(0)], [(1),(0),(0),(1)], [(1),(0),(0),(0)]
             )]
Every item of the list is an array with the same number of elements.
The first item of the list is an array representing the amplitude of the symbol.
The second item represents the phase.
In the third row the user can define a color code for each constelletion point. This makes the analysis much easier.
The fourth is a unique identification number.
The last item represents the bit sequence represented by the symbol.

 

16QAM
Fig. 1 : 16QAM constellation diagramm

 

In the follwoing example you can find definitions of the most important modulation formats.

 

##!/usr/bin/env python2
# -*- coding: utf-8 -*-

#Import functions and libraries
import sys
sys.path.append('../')
from pypho_setup import pypho_setup
from pypho_symbols import pypho_symbols
from pypho_signalsrc import pypho_signalsrc
from pypho_lasmod import pypho_lasmod
from pypho_fiber import pypho_fiber
from pypho_fiber_birefringence import pypho_fiber_birefringence
from pypho_arbmod import pypho_arbmod
from pypho_oamp import pypho_oamp
from pypho_osnr import pypho_osnr
from pypho_functions import *
import numpy as np
import copy
import matplotlib.pyplot as plt
from matplotlib import colors as mcolors
colors = dict(mcolors.BASE_COLORS, **mcolors.CSS4_COLORS)

plt.close('all')

# Define network elements
gp       = pypho_setup(nos = 1*128, sps = 128, symbolrate = 10e9)
symsrc   = pypho_symbols(glova = gp, nos = gp.nos, pattern = 'random')
esigsrc  = pypho_signalsrc(glova = gp, pulseshape = 'gauss_rz' , fwhm = 0.33)
sig_1550 = pypho_lasmod(glova = gp, power = 0, Df = 0, teta = np.pi/4.0)
SSMF     = pypho_fiber(glova = gp, l = 10.0e3,  D = 17.0,   S = 0, alpha = 0.2, gamma = 1.14, phi_max = 0.1)
DCF      = pypho_fiber(glova = gp, l = 1.0e3,  D = -SSMF.D*SSMF.l*1.0e-3,   S = 0, alpha = 0.2e-12, gamma = 1.0e-9, phi_max = 10.0)
amp      = pypho_oamp(glova = gp, Pmean = 3.0, NF = 5)
osnr     = pypho_osnr(glova = gp)
modulator= pypho_arbmod(glova = gp) 

# Simulation

# Create symbolpattern
symbols_x = symsrc(p1=16)
symbols_y = symsrc()

# Create pulsetrain
onebits = symsrc(pattern = 'ones')
esig = esigsrc(bitsequence = onebits)
E_Tx = sig_1550(esig = esig)                                                      



# OOK
constpts_ook = [(  [0.001, 1.0]),
                (  [(0)], [(1)] ) ] 


# 8-PSK
constpts_8psk = [(  [ 1.0*np.exp(2.0j*np.pi*x/8.0) for x in range(0,8)] ),
                 (  [(0),(0),(0)], [(0),(0),(1)], [(0),(1),(0)], [(0),(1),(1)], [(1),(1),(1)], [(1),(1),(0)], [(1),(0),(1)], [(1),(0),(0)])] 

# 16-PSK
constpts_16psk = [(      [ 1.0*np.exp(2.0j*np.pi*x/16.0) for x in range(0,16)] ),
             ([(0),(0),(0),(0)], [(0),(0),(0),(1)], [(0),(0),(1),(0)], [(0),(0),(1),(1)], [(0),(1),(0),(0)], [(0),(1),(0),(1)], [(0),(1),(1),(0)], [(0),(1),(1),(1)],
              [(1),(1),(1),(1)], [(1),(1),(1),(0)], [(1),(1),(0),(1)], [(1),(1),(0),(0)], [(1),(0),(1),(1)], [(1),(0),(1),(0)], [(1),(0),(0),(1)], [(1),(0),(0),(0)]
             )]    

# 4-QAM
constpts_4qam = [(      [ 1.0*np.exp(2.0j*np.pi*x/4.0) for x in range(0,4)] ),
                 (      [(0),(0)], [(0),(1)], [(1),(1)], [(1),(0)]             )]    


# 16-QAM
alpha = np.arctan(np.sqrt(1.0)/3.0)
constpts_16qam = [(           [np.sqrt(3.0**2 + 1.0)]*8 + [np.sqrt(2.0)]*4 + [np.sqrt(2*3.0**2)]*4),
             (          [2.0*np.pi*x/4.0+alpha for x in range(0,4)] + [2.0*np.pi*x/4.0+np.pi-alpha for x in range(0,4)] + [2.0*np.pi*x/4.0+np.pi/4 for x in range(0,8)] ),

             ([(0),(0),(0),(0)], [(0),(0),(0),(1)], [(0),(0),(1),(0)], [(0),(0),(1),(1)], [(0),(1),(0),(0)], [(0),(1),(0),(1)], [(0),(1),(1),(0)], [(0),(1),(1),(1)],
              [(1),(1),(1),(1)], [(1),(1),(1),(0)], [(1),(1),(0),(1)], [(1),(1),(0),(0)], [(1),(0),(1),(1)], [(1),(0),(1),(0)], [(1),(0),(0),(1)], [(1),(0),(0),(0)]
             )]  # codes not optimized!  

constpts = constpts_16psk
print(constpts)
E = modulator( E = E_Tx, constpoints = [constpts, constpts], symbols = [symbols_x, symbols_y] )          # Modulate

P0 = 4    
E = amp(E = E, Pmean = P0)
E = osnr( E = E, OSNR = 58.0 )          # Set initial OSNR to 58 dB

plt.figure(1)  
plt.subplot(2, 1, 1); plt.grid(True); plt.title("Input signal", loc='left');plt.grid(True);
E_samp = E[0]['E'][0][int(gp.nos/2)::gp.nos]; plt.plot(np.real(E_samp), np.imag(E_samp), 'ro')   # Plot constallation diagramme

E_Tx = copy.deepcopy(E)
n_span = 0

E = amp(E = E, Pmean = P0)

for c in range(0, n_span):  # Transmission fiber
    print('Span: ', c)
    fibres = pypho_fiber_birefringence.create_pmd_fibre(SSMF.l, 1.0e3, 0.00)
    E = SSMF(E = E, birefarray = fibres)      
    E = amp(E = E, Pmean = P0)

for c in range(0, n_span):  # Dispersion compensation
    E = DCF(E = E)  

plt.figure(1)  
plt.subplot(2, 1, 2); plt.grid(True); plt.title("Output signal", loc='left');plt.grid(True);
E_samp = E[0]['E'][0][int(gp.nos/2)::gp.nos]; plt.plot(np.real(E_samp), np.imag(E_samp), 'go')   # Plot constallation diagramme



# Plot power and phase of the signal
plt.figure(3)
plt.subplot(2, 1, 1)
plt.title("Input signal", loc='left')
plt.plot(gp.timeax()*1.0e12, np.abs(E[0]['E'][0])**2, 'r', label='$E_x(0, t)$')
plt.plot(gp.timeax()*1.0e12, np.abs(E[0]['E'][1])**2, 'g', label='$E_y(0, t)$')
plt.ylabel('$10log |E_{x,y}|^2$'); plt.xlabel('Time [ps]'); plt.grid(True)

plt.subplot(2, 1, 2)
plt.plot(gp.timeax()*1.0e12, np.angle(E[0]['E'][0]), 'r')
plt.plot(gp.timeax()*1.0e12, np.angle(E[0]['E'][1]), 'g')
plt.ylabel('$ \phi_{x,y} $'); plt.xlabel('Time [ps]');plt.grid(True); plt.legend(); plt.show()